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Making connections during math instruction is a recommended practice, but may increase the 
difficulty of the lesson. We used an avatar video instructor to qualitatively examine the role of linking 
multiple representations for 24 middle school students learning algebra. Students were taught how to 
solve polynomial multiplication problems, such as (2x + 5)(x + 2), using two representations. 
Students who viewed an explicit linking episode were more likely to make important connections, but 
less likely to exhibit problem-solving success than students who did not view the linking episode. 
Further, the quality of the connections made by the students was negatively related to subsequent 
problem solving and transfer. Thus, although focusing on connections may support rich 
understanding, it may decrease learning of solution methods. The results showcase the promise and 
pitfalls of making connections in mathematics. 
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Introduction 
Making explicit connections during mathematics learning instruction is a recommended practice 

(e.g., NCTM, 2000; Pashler et al., 2007). In fact, some researchers have even defined mathematics 
understanding in terms of the number or kind of connections that have been constructed by the 
learner (see Crooks & Alibali, 2014). One important type of connection to make is between multiple 
representations of the same concept or procedure (e.g., the graph of a line and its equation). In the 
current study, we used an avatar video instructor to examine the role that linking multiple 
representations during an algebra lesson had on connection-making and problem-solving 
performance. Our goals were (1) to compare the effects of a lesson that included a linking episode 
versus a lesson that did not include a linking episode on students’ connection-making and problem 
solving, and (2) to examine how students’ connection-making related to subsequent learning and 
transfer. We selected the domain of algebra because it functions as a “gatekeeper” to future 
educational opportunities (Moses & Cobb, 2001). Further, algebra is a focal point of reform efforts in 
mathematics education (e.g., NMAP, 2008). 

 

Theoretical Framework 
Mathematical ideas and representations are connected to and build upon other mathematical ideas 

and representations. The new Common Core State Standards for Mathematics (National Governors 
Association Center for Best Practices, 2010) is explicit on this point: fundamentally, “mathematics is 
a connected subject” (p. 5). Understanding these connections is fundamental to having a deep, 
conceptual understanding of mathematics. Indeed, the notion of connecting mathematical ideas and 
representations emerges in many of the standards put forth by the National Council of Teachers of 
Mathematics (NCTM, 2000), one of which is the ability to “translate among mathematical 
representations” (p. 67). 

The current study evaluated the influence of a lesson that explicitly linked multiple 
representations during instruction. We define linking episodes as segments of instruction during 
which the instructor seeks to make explicit links between ideas or representations (Alibali et al. 
2014). For example, imagine instructing students on the concept of mathematical equivalence first 
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using a balance scale, then using an equation, and finally by making the correspondences between the 
balance scale and equation explicit. Establishing the correspondences between the two 
representations would be considered a linking episode. 

On the one hand, linking episodes during instruction should facilitate greater understanding for 
students because they point out conceptual links among ideas and representations (e.g., Crooks & 
Alibali, 2013; Rittle-Johnson & Alibali, 1999). For example, Hiebert and colleagues (1997) argue, 
“we understand something if we see how it is related or connected to other things we know” (p. 4). 
Further, there are many examples of students benefitting from connections made via a variety of 
instructional techniques, including direct comparison (Rittle-Johnson, Star, & Durkin, 2009), linking 
gestures (Alibali et al., 2013) and fading from concrete to abstract representations (Fyfe, McNeil, & 
Borjas, 2015). 

On the other hand, making connections among representations can be cognitively demanding, 
requiring students to understand each representation as well as their correspondences (e.g., Gick & 
Holyoak, 1980; Nathan et al., 2011). For novices, this may overload their cognitive resources (e.g., 
Sweller et al., 1998). Indeed, learning from connections may be difficult for students with low 
background knowledge (e.g., Clark, Ayres, & Sweller, 2005; Kotovsky & Gentner, 1996). For 
example, one study found that making connections via comparison was beneficial for advanced 
students, but not for novices (Rittle-Johnson et al., 2009). Specifically, middle school students who 
did not know a method for solving the target equations benefitted more from studying two methods 
sequentially than from comparing two methods directly.  

Thus, the inclusion of explicit linking episodes may help students focus on making rich 
connections between multiple representations. At the same time, it may detract from focusing on 
learning to work with each individual representation correctly, particularly for novice students.  

Current Study 
In the current study, we had two specific aims. Our first aim was to compare the effects of a 

lesson that included a linking episode versus a lesson that did not include a linking episode on 
students’ connection-making and problem solving. Specifically, middle school students were taught 
how to solve polynomial multiplication problems, such as (2x + 5)(x + 2), by an avatar instructor 
using an area-based representation and an equation-based representation (see Figure 1). Students in 
the link condition viewed a subsequent linking episode and students in the no-link condition did not. 
We expected students in the link condition to make more high-quality connections between the two 
representations than students in the no-link condition, but to have similar problem-solving 
performance. Our second aim was to examine how the quality of students’ connection-making 
related to subsequent learning and transfer, regardless of condition. After the initial lesson and 
assessment, all students were exposed to an instructional linking episode and a posttest. This 
provided students an opportunity to use the knowledge they acquired from the initial lesson. We 
expected the quality of students’ connection-making to be positively related to their performance on 
posttest items that tapped understanding of the links between the representations, but negatively 
related to their performance on posttest items that tapped understanding of individual representations. 
This work was part of a larger project that developed a teacher avatar (Anasingaraiu et al., 2016) and 
is investigating how variations in the avatar's behavior during linking episodes influences student 
learning. The present study focused on variations in the presence of linking episodes in the avatar 
lesson.  
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Figure 1. Image of the lesson with the area method (top) and equation method (bottom). 

Method 

Participants  
Participants were 16 seventh-graders and 8 eighth-graders attending one of three middle schools 

in a mid-sized Midwestern city in the United States. Participants were predominantly White (75% 
White, 8% Asian, 4% Hispanic, 13% Other) and their mean age was 13.2 years (min = 11.5, max = 
14.2). Sixty-two percent were male. An approved email was sent to all seventh- and eighth-grade 
students at the schools inviting them to participate in a project that would take place on the 
university’s campus. Each student was compensated $15 for participating.   

Design and Procedure 
We used a pretest-lesson-posttest design. Each student participated in a single one-on-one session 

that lasted 45 minutes. Students completed a pretest to assess their background knowledge. Next, 
they viewed a lesson presented by an avatar video instructor. The lesson focused on multiplying 
binomials using a target problem: (2x + 5)(x + 2). For the lesson, children were randomly assigned to 
one of two conditions (Figure 2): link (n = 12) or no-link (n = 12). 
 

 
Figure 2. Sequence of activities in the experimental procedure. 

The instructor described an area-based method and then described an equation-based method 
(Figure 1). In the link condition, the avatar instructor then provided a linking episode in which she 
delineated the correspondences between the two representations (e.g., “2x + 5 in the equation 
corresponds to the length 2x + 5 in the rectangle”). Students then engaged in an explanation of the 
target problem and solved the items on the midtest. The purpose of the explanation and midtest was 
to assess differences in learning between students who had viewed a linking episode and those who 
had not. After the midtest, all students in both conditions viewed the linking episode and completed a 
posttest. The purpose of the posttest was to evaluate how the quality of students’ initial connection-
making (as assessed on the explanation and midtest) related to their learning from subsequent 
instruction. Throughout the session, students were encouraged to think aloud so we could gain a 
richer account of their thought processes (Ericsson & Simon, 1993). 

Pretest Linking
EpisodeMidtest Posttest

Area Method, Equation 
Method

(No-Link Instruction)

Area Method, Equation 
Method, Linking Episode

(Link Instruction)
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Materials and Measures 
All items on all measures were presented one at a time on an interactive smart board. 
Pretest. The pretest included six items (see Table 1 for examples). The first five items tapped 

students’ background knowledge of operating with variables and calculating area. The sixth item was 
a target polynomial multiplication problem.  

Explanation. After the avatar lesson, students were shown the instructional problem and asked: 
“Here is the same problem you just learned about. Imagine that another student is seeing this 
example for the first time. Can you explain how to solve this problem?” Explanations were coded for 
whether students (1) exhibited a “trouble spot,” defined as indicating confusion or displaying 
incorrect understanding (Alibali et al., 2013), (2) referred to one or both representations, and (3) 
provided a general solution strategy rather than a step-by-step procedure. 

Midtest. The midtest included two items (see Table 1 for examples). The first item was a 
polynomial multiplication problem. The second item was a linking item. 

Posttest. The posttest included seven items (see Table 1 for examples). Two were polynomial 
multiplication problems. Three were linking items. The final two were transfer items that tapped 
whether students could apply what they learned about multiplying expressions with variables to 
multiplying whole numbers. Items were scored as correct or incorrect based on students’ written 
answers and on the verbal think-aloud reports they provided while solving. 
 

Table 1: Example Items Presented on the Pretest, Midtest, and Posttest 
Item Type Example Item Instructions Example Responses 
Background 
Knowledge Item 
(five on pretest)  

 

Simplify the 
expression. 

Correct: 
2x 

 
Incorrect: 
1, 1x, x, 2, x2 

Solve Item (one 
on pretest, one 
on midtest, two 
on posttest) 

 

Simplify the 
expression by 
multiplying the terms 
6x plus 3 and y plus 
7. 

Correct: 
6xy + 42x + 3y + 21 

 
Incorrect: 
6xy + 10, 21*6xy 

Link Item (one 
on midtest, three 
on posttest) 

 

Circle the term in the 
equation that 
represents the area of 
the shaded rectangle. 

Correct: 
8x 

 
Incorrect: 
40 

Transfer Item 
(two on posttest) 

 

Which area model(s) 
correspond to the 
multiplication 
problem 57 x 32? 

Correct: 
BC 

 
Incorrect: 
Only B, ABC, D 
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Results 

Pretest  
Students did moderately well on the five background knowledge items (percent correct ranged 

from 42% to 88%). However, only one student (out of 24) correctly solved the polynomial 
multiplication problem: (x + 2)(x + 1). The two most common errors on that problem were to add the 
two x’s and add the two integers to get 2x + 3, or to combine terms within parentheses to get 2x * 1x. 
Conditions were well matched at pretest (Mlink = 58% vs. Mno-link = 54%). A median split on total 
percent correct yielded a low-background-knowledge group (n = 12, M = 36%) and a high-
background-knowledge group (n = 12, M = 77%). All students but one were unsuccessful on the 
target problem and were thus novices; the knowledge groups differed in terms of the background 
knowledge necessary to learn about the target problem.  

Explanation 
Following the lesson, students were asked to explain how to solve a polynomial multiplication 

problem. Consider the explanations presented below: 

Student 1 in the link condition: “Basically what you would do is multiply each number by every 
other number that’s in the different set. So 2x times x [draws line connecting the 2x and the x 
in the equation] is 2x2 [circles 2x2 in the area model]. 2x times 2 [draws line connecting the 
2x and the 2 in the equation] is 4x [circles 4x in the area model]. Both of these are one side 
[circles the 2x and 5 across the top of the area model] so you don’t have to multiply these. 
Then you do 5 times x [draws line connecting the 5 and the x in the equation], which is 5x 
[circles 5x in area model]. And 5 times 2 [draws line connecting 5 and 2 in equation], which 
is 10 [circles 10 in area model]. Then you would take all those answers together [circles all 
four terms in bottom equation] and simplify them. So 4x plus 5x is 9x. Then 10, and 2x2.” 

Student 2 in no-link condition: “So first you would do what’s in parentheses…you do 2x plus 5 
[points to 2x and 5 in equation], which I think would be 7x [writes 7x under the 2x + 5 in the 
equation]. Then you do x plus 2, which would be 2x [writes 2x under x + 2 in the equation]. 
Then you multiply them I think. So, it would be 14x.” 

Student 1 provides an accurate explanation, mentions a general solution strategy (“multiply each 
number by every other number that’s in the different set”), and refers to both representations. In 
contrast, Student 2 exhibits a trouble spot (i.e., incorrect understanding), provides only a step-by-step 
procedure, and relies solely on the equation-based method. 

To capture these differences, we created an explanation quality score. Explanations received one 
point for each of the following features: (1) did not contain a trouble spot, (2) offered a general 
solution method, and (3) referred to both representations. One third of students scored a maximum 3 
out of 3, and across all students the average explanation quality score was 1.8 (out of 3; SD = 1.1). 
This suggests that typical explanations hit about two of the three criteria for being high-quality. It 
was most common to provide an explanation that was free from trouble spots (19 out of 24 
explanations). It was less common to refer to both representations (12 out of 24 explanations) or to 
offer a general solution method (12 out of 24 explanations). 

Students with low background knowledge had difficulty in explaining. Compared to the high-
background-knowledge group, they were more likely to exhibit a trouble spot (42% vs. 0%), less 
likely to state a general solution method (33% vs. 67%), and less likely to refer to both 
representations (42% vs. 58%). As such, students with low background knowledge had lower quality 
scores (M = 1.3) than students with high background knowledge (M = 2.3), and there was little 
variability between the two conditions among low-background-knowledge students. 
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However, within the high-background-knowledge group, explanations varied by condition. 
Compared to students in the no-link condition, students in the link condition were more likely to 
provide a general solution method (83% vs. 50%) and more likely to refer to both representations 
(83% vs. 33%). Indeed, for the high-background knowledge group, students in the link condition had 
higher explanation-quality scores (M = 2.7) than students in the no-link condition (M = 1.8). 

Midtest  
Over half of the students solved the target polynomial multiplication problem correctly at midtest 

(54%) and all but three students (88%) solved the linking item correctly. Students with low 
background knowledge were less likely than their high-background-knowledge peers to correctly 
solve the multiplication item (33% vs. 75%), and the linking item (75% vs. 100%). 

As with explanation quality scores, condition differences were minimal for the low-background-
knowledge group. For the high-background-knowledge group, performance on the linking item was 
at ceiling, but performance on the multiplication item varied. Students in the link condition were less 
likely to solve the problem correctly than students in the no-link condition (50% vs. 100%). All the 
high-background-knowledge students who solved the multiplication problem incorrectly also 
provided explanations focused on both representations, suggesting that a focus on linking potentially 
interfered with learning at least one method well. Overall, regarding our first research goal, we found 
that a lesson with a linking episode resulted in higher-quality connection-making among students 
with sufficient background knowledge, but lower problem-solving success relative to a lesson 
without a linking episode.  

Posttest  
The posttest occurred after all students viewed a brief instructional linking episode. It allowed us 

to evaluate how students’ initial connection-making related to subsequent learning and transfer. 
Overall, performance was moderate on the polynomial multiplication solve items (M = 60%, SD = 
44%), high on the three linking items (M = 88%, SD = 26%), and moderate on the two transfer items 
(M = 52%, SD = 35%). Most students demonstrated some learning by the posttest. At pretest, only 
one student (4% of the sample) solved a polynomial multiplication problem correctly, but 17 out of 
the 24 students (71%) solved at least one correctly at posttest.  

Recall that students explained a target problem after the initial instruction and received an 
explanation quality score. These explanation quality scores were related to posttest performance (see 
Table 2). The correlations in Table 2 suggest that explanation quality scores were positively related 
to posttest linking scores, weakly related to posttest problem-solving scores, and negatively related to 
posttest transfer scores. We also examined these associations by splitting students into a high-quality 
explanation group (n = 8, scored 3 out of 3 on explanation quality) and a low-quality explanation 
group (n = 16, scored 0, 1, or 2 out of 3). Among students with high background knowledge, there 
were clear differences based on explanation quality. Compared to students in the low-quality 
explanation group, students in the high-quality explanation group had higher posttest link scores 
(100% vs. 89%), similar posttest solve scores (75% vs. 75%) and lower posttest transfer scores (41% 
vs. 67%). These differences lend credence to the idea that students who focus on making connections 
(and therefore have higher-quality explanation scores) do well on items that tap their knowledge of 
links, but not as well on items that tap their knowledge of the individual solution methods or 
representations.  
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Table 2: Correlations Between Explanation Quality Scores and Posttest Performance 
 Whole Sample Low-Background-

Knowledge Group 
High-Background-
Knowledge Group 

Posttest Link Scores rs = .43 rs = .50 rs = .14 
Posttest Solve Scores rs = .22 rs = .29 rs = -.16 

Posttest Transfer Scores rs = -.18 rs = .00 rs = -.42 
 

To look at this more directly, we made one additional comparison. The explanation quality scores 
took into account trouble spots, the provision of a general solution method, and references to both 
representations. To more directly consider connection-making, we compared students who differed 
only on this last criterion: students who referenced both representations (n = 12) vs. students who 
referenced only one representation (n = 12). Students who referenced both representations had 
slightly higher posttest link scores (89% vs. 86%), slightly lower posttest solve scores (58% vs. 63%) 
and lower posttest transfer scores (41% vs. 63%). These transfer differences were particularly 
pronounced for students with high background knowledge (36% vs. 80%). Overall, regarding our 
second research goal, we found that students’ initial connection-making was related to their 
subsequent learning and transfer. Connection-making seemed to support students’ understanding of 
the links between the representations, but not their ability to solve familiar or novel problems about 
the individual representations.  

Discussion 
Educational opportunities for all learners expand as we come to understand the conditions under 

which teachers’ connection-making during instruction affects student learning. The current results 
highlight the promise and pitfalls of including linking episodes during algebra lessons. For middle 
school students with sufficient background knowledge, a lesson with a linking episode led to higher-
quality explanations than a lesson without one. That is, students who saw the linking episode were 
more likely to provide a general solution method that applied to both representations and to refer to 
both representations rather than one. This suggests they were developing rich connections necessary 
for mathematics understanding (Hiebert et al., 1997).  

However, students who saw the link were also less likely to solve a target problem correctly than 
students who did not see the link – potentially because they were focusing on processing the two 
representations and their correspondences rather than solidifying their knowledge of a correct 
solution method. Further, regardless of condition, students’ engagement in connection-making was 
related to their learning and transfer from a subsequent instructional episode. Specifically, higher-
quality connection-making appeared to be positively related to performance on posttest items that 
tapped understanding of the links between the representations, but negatively related to performance 
on posttest items that tapped understanding of individual solution methods. Thus, linking episodes 
may help students focus on making rich connections, but may also detract from their focusing on 
learning each solution method correctly, particularly for novice students (see also Clark et al., 2005; 
Rittle-Johnson et al., 2009). This may represent a trade-off in the development of conceptual versus 
procedural knowledge (e.g., Crooks & Alibali, 2014). Improvements in understanding conceptual 
links may come at the expense of improvements in understanding key procedures. Importantly, these 
results support the recommendation that instruction should include linking episodes that highlight 
connections among mathematics ideas. We find connection-making can be supported by a video-
based avatar and we identify trade-offs between building rich conceptual connections and performing 
representation-specific solution procedures.  



Mathematical Processes 

Galindo, E., & Newton, J., (Eds.). (2017). Proceedings of the 39th annual meeting of the North American Chapter 
of the International Group for the Psychology of Mathematics Education. Indianapolis, IN: Hoosier 
Association of Mathematics Teacher Educators. 

724 

Acknowledgments 
Support for this research was provided by the U.S. Department of Education, Institute of 

Education Sciences grant number R305A130016 and training grant number R305B130007. 

References 
Alibali, M. W., Nathan, M. J., Church, R. B., Wolfgram, M. S., Kim, S., & Knuth, E. J. (2013). Gesture and speech 

in mathematics lessons: Forging common ground by resolving trouble spots. ZDM – International Journal on 
Mathematics Education. 45, 425–440. doi:10.1007/s11858-012-0476-0 

Alibali, M. W., Nathan, M. J., Wolfgram, M. S., Church, R. B., Jacobs, S. A., Johnson Martinez, C., & Knuth, E. J. 
(2014). How teachers link ideas in mathematics instruction using speech and gesture: A corpus analysis. 
Cognition and Instruction, 32, 65–100. doi:10.1080/07370008.2013.858161 

Alibali, M. W., Young, A., Crooks, N., Yeo, A., Wolfgram, M., Ledesma, I., Nathan, M. J., Church, R. B., & Knuth, 
E. J. (2013). Students learn more when their teacher has learned to gesture effectively. Gesture, 13, 210-233. 

Anasingaraju, S., Wu, M.-L., Adamo-Villani, N., Popescu, V., Cook, S. W., Nathan, M. J. & Alibali, M. W. (2016). 
Digital learning activities delivered by eloquent instructor avatars: Scaling with problem instance. Proceedings 
of SIGGRAPH Asia Symposium on Education. 

Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics 
through spreadsheet applications. Educational Technology Research and Development, 53(3), 15–24. 

Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. 
Developmental Review, 34, 344–377.  

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis. Cambridge, MA: MIT press. 
Fyfe, E. R., & McNeil, N. M, & Borjas, S. (2015). Benefits of “concreteness fading” for children’s mathematics 

understanding. Learning and Instruction, 35, 104-120. doi:10.1016/j.learninstruc.2014.10.004 
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306–355. 
Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K. C.,Wearne, D., Murray, H., Olivier, A., & Human, P. (1997). 

Making sense: Teaching and learning mathematics with understanding. Portsmouth, NH: Heinemann. 
Kotovsky, L., & Gentner, D. (1996). Comparison and categorization in the development of relational similarity. 

Child Development, 67, 2797– 2822. 
Moses, R., & Cobb, C. (2001). Radical equations: Math literacy and civil rights. Boston, MA: Beacon Press. 
Nathan, M. J., Wolfgram, M., Srisurichan, R., & Alibali, M. W. (2011). Modal engagements in precollege 

engineering: Tracking math and science across symbols, sketches, software, silicone and wood (Paper No. AC 
2011-315). In Proceedings of the American Society of Engineering Education (ASEE) 2011 (pp. 1–32). 
Vancouver, BC: ASEE Publications. 

National Governors Association Center for Best Practices, Council of Chief State School Officers (2010). Common 
Core State Standards: Mathematics. Washington, DC: Author. 

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, 
VA: Author. 

National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National 
Mathematics Advisory Panel. Washington, DC: U.S. Department of Education. 

Pashler, H., Bain, P. M., Bottge, B. A., Graesser, A., Koedinger, K., McDaniel, M., & Metcalfe, J. (2007). 
Organizing Instruction and Study to Improve Student Learning. IES Practice Guide. National Center for 
Education Research: Washington, DC. 

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of math: Does one lead to the 
other? Journal of Educational Psychology, 91, 175–189. 

Rittle-Johnson, B., Star, J. R., & Durkin, K. (2009). The importance of prior knowledge when comparing examples: 
Influences on conceptual and procedural knowledge of equation solving. Journal of Educational Psychology, 
101(4), 836–852.  

Sweller, J., Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational 
Psychology Review, 10(3), 251-296. 
 


